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Prediction of tau accumulation 
in prodromal Alzheimer’s disease 
using an ensemble machine 
learning approach
Jaeho Kim1,2,4,5, Yuhyun Park2,3, Seongbeom Park2, Hyemin Jang2,4,5, Hee Jin Kim2,4,5, 
Duk L. Na2,4,5,6,7, Hyejoo Lee2,4,5* & Sang Won Seo2,3,4,5,7*

We developed machine learning (ML) algorithms to predict abnormal tau accumulation among 
patients with prodromal AD. We recruited 64 patients with prodromal AD using the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) dataset. Supervised ML approaches based on the random 
forest (RF) and a gradient boosting machine (GBM) were used. The GBM resulted in an AUC of 0.61 
(95% confidence interval [CI] 0.579–0.647) with clinical data (age, sex, years of education) and a higher 
AUC of 0.817 (95% CI 0.804–0.830) with clinical and neuropsychological data. The highest AUC was 
0.86 (95% CI 0.839–0.885) achieved with additional information such as cortical thickness in clinical 
data and neuropsychological results. Through the analysis of the impact order of the variables in each 
ML classifier, cortical thickness of the parietal lobe and occipital lobe and neuropsychological tests 
of memory domain were found to be more important features for each classifier. Our ML algorithms 
predicting tau burden may provide important information for the recruitment of participants in 
potential clinical trials of tau targeting therapies.

Mild cognitive impairment (MCI) refers to a transitional state between normal ageing and Alzheimer’s disease 
(AD)1,2. The rapid development of molecular imaging methods has enabled the detection of amyloid-β (Aβ) 
using positron emission tomography (PET) in the MCI stages. Previous studies have shown that 40–60% of 
MCI patients are Aβ positive (Aβ+) on PET, a characteristic of prodromal  AD3–5. Recently, these patients with 
prodromal AD have also been classified into fast and slow decliners according to their downstream biomarker 
 status6. Especially, considering that the presence of neurofibrillary tangles (NFTs) formed by tau is a highly pre-
dictive indicator for cognitive  decline7, it is important to develop methods to detect tau uptake in prodromal AD 
in vivo. In this regard, a recent AV-1451 PET  study8, which investigated the NFT burden in the brain, reported 
that patients with prodromal AD exhibit in-vivo Braak stages ranging from I/II to V/VI. However, like all PET 
techniques, its clinical utility in medical practice has been limited because of its cost, availability, and safety, as 
there are risks regarding radiation  exposure9. Regardless, the prediction of tau uptake remains an important goal, 
as the expectation is that future treatment strategies may target tau protein.

The exponential growth of computing power with massive data sets has led to machine learning (ML) being 
an alternative analytics method for clinical decision making and for searching for new relationships between 
disease and symptoms. Random forest (RF)10 and gradient boosting machine (GBM)11 are commonly used ML 
 methods12 that have been outperformed consistently in many large-scale  studies13. In addition, unlike other ML 
predictions with routinely used performance measures, tree-based ML provides clinically useful information, 
such as the relative importance of the clinical features and whether they are related positively or negatively. 
However, these interpretable ML methods have not been used for classifying tau burden in previous studies.
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In a previous study, worse performance on the domain-specific neuropsychological tests was associated with 
a greater 18F-AV1451 uptake in key regions implicated in memory, visuospatial function, and  language14. In the 
combined prodromal AD and AD dementia group, increased tau PET uptake and reduced cortical thickness 
were associated with worse performance on a variety of neuropsychological  tests15. Altogether, these biomark-
ers seem to be the potential features of classifiers predicting tau burdens. In particular, different models with 
various combinations of biomarkers are needed because not all cohorts/centres have access to all biomarkers.

In the present study, we aimed to develop a model to predict tau burdens in the prodromal AD using multi-
modal biomarkers. We hypothesized that ML could provide an objective, unbiased estimator for classifying tau 
positivity as an alternative statistical method. We developed and validated several RF and GBM models with 
various combinations of variables in order to account for the various clinical environments. Variable importance 
and partial dependency plot (PDP) were also assessed to identify the most relevant features and their relation-
ship to tau burden.

Results
Demographics and clinical characteristics of participants. The demographic information of the 
participants is summarised in Table 1. The A + T + group had a higher percentage of female participants exam-
ined compared to the A + T− group (58.8% vs. 26.7%, p = 0.009). The A + T− group showed a higher number of 
years of education than the A + T + group (16.6 ± 3.1 years vs. 15.3 ± 2.1 years, p = 0.045). There were no differ-
ences in age (p = 0.463) and frequency of APOE4 carriers (p = 0.374) between the A + T− and A + T + groups.

The A + T + group showed a lower hippocampal volume (4854.7 ± 1077.0  mm3 vs. 5776.8 ± 865.0  mm3, 
p < 0.001) and decreased cortical thickness in all lobes (p = 3.2 ×  10–5 to 0.042) compared to the A + T− group. 
The A + T + group also showed a higher score on The Alzheimer’s Disease Assessment Scale-Cognitive (ADAS-
Cog) 13-item scale than the A + T− group (28.3 ± 8.4 vs. 19.7 ± 8.8, p < 0.001).

Model performance to classify tau positivity. Table 2 presents the performance metrics of GBM and 
RF for the six different models. The GBM resulted in an AUC of 0.61 (95% CI 0.579–0.647) with the baseline 
model 1 and a higher AUC of 0.817 (95% CI 0.804–0.830) with model 2 that included NP variables. The high-
est AUC was 0.86 (95% CI 0.839–0.885) achieved with model 6 (Fig. 1a). The RF had an AUC of 0.59 (95% 
CI 0.562–0.608) with model 1, 0.77 (95% CI 0.758–0.795) with model 2 and the highest AUC of 0.82 (95% CI 
0.808–0.839) using model 6 (Fig. 1b).

The relative variable importance and PDP. The relative feature importance from each predictor of 
model 6 is shown in Fig. 2, indicating the highest contribution to the prediction of tau positivity. In the GBM 
model, cortical thickness of the parietal lobe was the most important feature followed by the neuropsychological 
test of memory domains, cortical thickness of the occipital lobe, and number cancellation test score. The impor-
tant features identified by RF were similar to those identified in the GBM model, such as the cortical thickness 
of the parietal lobe, the neuropsychological test of memory domains, cortical thickness of the occipital lobe, 
and word recognition score. As expected, according to the PDP plot, cortical thickness and memory scores are 

Table 1.  Demographics and biomarkers of A + MCI participants. MCI mild cognitive impairment, MMSE 
mini-mental state examination, PET Positron emission, ADAS-cog The Alzheimer’s disease assessment scale-
cognitive, HV hippocampal volume, Cth cortical thickness, A amyloid, T tau. *P < 0.05 between A + T− and 
A + T +.

Total (N = 64)

A + T− (N = 30) A + T + (N = 34)

Demographics

Age, years 72.1 ± 7.2 70.8 ± 7.4

Sex, % female* 8 (26.7%) 20 (58.8%)

Education, years* 16.6 ± 3.1 15.3 ± 2.1

MCI stage, % late MCI 11 (36.7%) 16 (47.1%)

MMSE 26.9 ± 3.9 24.7 ± 5.0

ADAS-cog13* 19.7 ± 8.8 28.3 ± 8.4

Biomarkers

APOE4 carriers 19 (60.3%) 25 (73.5%)

HV mm3* 5776.8 ± 865.0 4854.7 ± 1077.0

AV45 PET SUVR 1.33 ± 0.16 1.44 ± 0.23

Cth_Frontal mm* 3.15 ± 0.12 3.04 ± 0.15

Cth_Temporal mm* 3.37 ± 0.17 3.21 ± 0.20

Cth_Parietal mm* 3.14 ± 0.16 2.94 ± 0.18

Cth_Cingulate mm* 3.35 ± 0.17 3.24 ± 0.23

Cth_Occipital mm* 3.14 ± 0.18 2.99 ± 0.21

Cth_Global mm* 3.19 ± 0.13 3.04 ± 0.16
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negatively related to the tau accumulation. Additional details regarding the influential variable ranking through 
model 2 to model 6 are included in Supplementary Table S1.

Discussion
In the present study, we developed and compared ML approaches for prediction of the brain tau burden in 
prodromal AD patients using multimodal biomarkers based on the ADNI dataset. We found that the GBM with 
multi-model biomarkers showed a good predictive performance. Especially, the important features in predicting 
the brain tau burden in prodromal AD patients involved brain structures and neuropsychological results that 
are responsible for memory. We also found that the GBM with baseline demographics and neuropsychological 
results showed a reasonable predictive performance. Furthermore, the RF had performance similar to that of the 
GBM. Therefore, our approaches predicting the tau burden may provide important information for the recruit-
ment of participants in potential clinical trials of tau-targeting therapies, which is helpful to reduce failure in 
screening. We have developed six models for tau positivity with various combinations of input features reflecting 
the clinical practice. To construct a model relying on prediction performance alone may lead to underestimat-
ing the cost of acquisition and accessibility of the clinical resources. Thus, models from this study maximize the 
potential applicability of our models in any medical conditions and possibly provide efficient use for deploying 
cost-effective interventions.

We found that 53.1% of patients with prodromal AD showed a significant tau uptake, which was consistent 
with that seen in previous studies. Previously, Ossenkoppelle et al. set tau PET-positive (61.4%) as a Youden 
Index derived cut-off16,17 and Maass et al. set significant tau PET uptake as Braak ROI-based staging using a 
regression-based conditional interference tree  approach8. Especially in the ADNI data, a significant tau uptake 
in prodromal AD with conditional inference method analysis was similar (57.9%) to our result.

Table 2.  ML models with different combinations of biomarkers using the total dataset. AUC  Area under the 
curve, MCI mild cognitive impairment, APOE4 Apolipoprotein E 4 genotype, NP Neuropsychological, GBM 
gradient boosting machine, RF random forest, suvr_fdg Standardized uptake value ratio of fluorodeoxyglucose-
positron emission tomography, HV/ICV Hippocampal volume/Intracranial volume.

Model

GBM RF

AUC 95% CI AUC 95% CI

Model 1 Baseline (age, sex, education) + MCI stage 0.613375 0.57972 0.64703 0.585162 0.562303 0.608021

Model 2 Baseline + MCI stage + NP test 0.817137 0.803992 0.830282 0.776385 0.758101 0.794668

Model 3 Baseline + MCI stage + NP test + APOE4 0.814002 0.795381 0.832623 0.818182 0.80336 0.833003

Model 4 Baseline + MCI stage + NP test + APOE4 + suvr_fdg 0.867294 0.849891 0.884696 0.801463 0.790315 0.812611

Model 5 Baseline + MCI stage + NP test + APOE4 + HV/ICV 0.825496 0.807022 0.843971 0.792059 0.771281 0.812836

Model 6 Baseline + MCI stage + NP test + APOE4 + cortical 
thickness 0.862069 0.839286 0.884852 0.823407 0.807749 0.839064

Figure 1.  The ROC curve of the proposed method (a) GBM (b) RF. ROC receiver operating characteristic, 
AUC  area under the curve, GBM gradient boosting machine, RF random forest. model 1 = Baseline (Age, 
Sex, Education) + MCI stage; model 2 = Baseline + MCI stage + NP test; model 6 = Baseline + MCI stage + NP 
test + APOE4 + cortical thickness. Each plot was made using the R software.
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In the present study, our algorithm using demographics, neuropsychological results, APOE4 genotype, SUVR 
of FDG PET and cortical thickness showed a good predictive performance for predicting tau burden in Aβ + MCI 
populations. Previously, a study predicting A/T/N stages for a spectrum of individuals ranging from healthy 
controls to those with MCI and AD was  published18. This study used structural-MRI alone and showed that the 
model predicted tau at 89% across the clinical diagnostic group. However, those prediction values were analysed 
in a healthy control to MCI and AD whereas we did it in a group of homogeneous patients, which could affect 
predictive performance. Furthermore, in the present study, the GBM with only baseline demographics and 
neuropsychological results showed a reasonable predictive performance.

The GBM and RF had an adequate performance predicting tau positivity. In the GBM method, a number of 
weak learners were combined to decrease bias. They generally showed a better performance with low variance 
data. Since our data set consists of only prodromal AD patients indicating a low variance, the performance of 
the GBM might be better than RF. In addition, interpretability, which is one of the main challenges of ML, was 
enabled by providing additional information on the model via variable importance and PDP. The results of this 
study provide evidence to consider ML to be a more accessible prediction tool for clinical use.

Through analysis of the impact order of the variables in each machine learning classifier, abnormalities in the 
cortical thickness and neuropsychological tests related to memory function were selected as important features. 
Our findings were consistent with a recent study showing strong relationships between increased tau pathology 
and reduced cortical thickness with worse performance on neuropsychological test pronounced in bilateral 
temporoparietal regions in prodromal AD and AD  dementia15. Considering that our participants consisted of 
those with prodromal AD, our findings might be explained by the fact that memory is affected early during the 
course of  AD19. Interestingly, we found that the cortical thickness in the occipital region has a strong predictive 
value for disease severity in prodromal AD. Our findings might be supported by a previous study showing that 
cognitive function in prodromal/early stage of AD is related to occipital  connectivity20.

We were able to conduct this study because of the availability of various clinical data through the ADNI 
because the ADNI is a large cohort of well-characterised subjects, and the clinical and imaging data were based 
on standardised protocols and analyses. However, there are a few limitations to this study. First, we set binary 

Figure 2.  Variable importance plot for model 6 (a) GBM and (b) RF; and partial dependence plot for model 6 
(c) GBM and (d) RF. MMSE mini-mental state examination, APOE4 Apolipoprotein E 4 genotype, Cth cortical 
thickness, GBM gradient boosting machine, RF random forest. Each plot was made using the R software.
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limits to tau burden as only tau positivity, defined as positive when the in-vivo Braak stage was ≥ III/IV, which 
is of particular interest since it might be considered as the transitional stage towards  AD8. There is, however, 
no consensus yet on how to label tau PET scans as normal or  abnormal8. However, the frequency of tau (+) in 
prodromal AD  patients8,17 seemed to be similar to that observed in previous studies. Second, some etiologically 
important variables or risk factors that have previously been established in AD research were not examined. 
Future research should certainly take into account other variables found to be of etiological significance.

Another limitation of our study is relatively small number of samples. There has been no consensus on the 
measure to estimate the effective sample size for machine learning models. Additionally, acquisition for disease-
specific data is still limited and relatively small in clinical practice. Therefore, our result needs to be addressed and 
clarify using a larger sample size in future studies. Despite these limitations, machine learning with the rigorously 
well-defined framework proposed here may be useful to explore the nature of heterogeneous tau pathology in 
the prodromal stage of AD and to examine the relationship between clinical information, neuropsychological 
profiles, and brain imaging. Developing a better understanding of the algorithms and integration of machine 
learning into clinical practice is therefore a critical step to support the development of general population pre-
diction models in the prodromal stage of AD.

In conclusion, our ML algorithms for predicting the brain tau burden in prodromal AD showed good accu-
racy, it can be a useful tool to screen study populations for targeted tau therapies and predict disease severity and 
prognosis. Future studies are warranted to evaluate tau burden in the transitional stage and account for other 
significant etiological variables.

Methods
Participants. Our study population primarily consisted of subjects from the Alzheimer’s Disease Neuroim-
aging Initiative (ADNI)-3. A full list of inclusion/exclusion criteria is described in detail at http://adni.loni.usc.
edu/metho ds/docum ents/. All participants provided written informed consent, and all protocols were approved 
by each participating site’s institutional review board. The authors obtained approval from the ADNI Data Shar-
ing and Publications Committee for data use and publication. In addition, all methods were implemented in 
accordance with the approved guidelines. Briefly, MCI participants had a subjective memory complaint with a 
Clinical Dementia Rating (CDR) score of 0.5 (Petersen et al., 2010). The stage of MCI (early and late) patients 
was determined using the Wechsler Memory Scale (WMS) Logical Memory II; Early MCI (EMCI) subjects must 
have education-adjusted scores between approximately 0.5 and 1.5 SD below the mean of cognitively normal 
adults (on delayed recall of one paragraph from WMS Logical Memory II). All subjects gave written informed 
consent prior to  participation6.

In this study, we included MCI patients who underwent 3.0 T MRI scanning, 18F-AV45 (florbetapir) PET, and 
AV1451 (flortaucipir) PET at baseline. As of March 2019, a total of 133 patients met this qualification, and their 
baseline diagnoses were EMCI (n = 76) and late MCI (LMCI, n = 57). Among these, we included in the present 
study patients with Aβ positivity on AV45 PET, which was defined as standardised uptake value ratios (SUVR) 
above a cut-off value of 1.11 (Landau et al., 2013; Landau et al., 2012) (37 with EMCI and 27 with LMCI) (Fig. 3).

Clinical data collection: feature space. Basic demographics and clinical data were extracted from the 
ADNIMERGE dataset from the ADNI database (http://adni.loni.usc.edu/) in March 2019. Extracted clinical 
data included the presence of the APOE4 genotype, hippocampal volume (HV), total intracranial volume (ICV), 
18F-fluorodeoxyglucose (FDG) standardised uptake value ratio (SUVR) (Average FDG SUVR of bilateral angu-
lar, inferior temporal, and posterior cingulate regions; AD signature regions relative to the pons/vermis reference 
region) (Landau et al., 2011a; Landau et al., 2010), AV45 SUVR (Average AV45 SUVR of the frontal, anterior 
cingulate, precuneus, and parietal cortex relative to the cerebellum) and AV1451 SUVR(Average AV1451 Braak 
I/II, Braak III/IV and Braak V/VI). The detailed protocols for image processing have been described in previous 
studies (Bittner et al., 2016; Hsu et al., 2002; Landau et al., 2011b) and in the ADNI methods section at http://
adni.loni.usc.edu/.

Definition of Tau abnormality: outcome. We defined participants as having an abnormal “T” (T +) if 
their in-vivo Braak stage was III/IV or greater by a conditional inference tree approach. This approach embeds 
decision tree-structured regression models to determine in-vivo Braak staging based on AV1451 uptake, as sug-
gested by a previous  study21. The regression model assigned participants with a mean Braak V/VI ROI AV1451 
SUVR > 1.267 to in-vivo Braak stage V/VI. The remaining participants underwent the same procedure, using 
first Braak III/IV (> 1.207) and then Braak I/II (> 1.142) ROIs, leaving the remaining participants in in-vivo 
Braak stage 0. This conditional inference tree approach thus classified all participants into either Braak V/VI, 
Braak III/IV, Braak I/II or Braak stage 0 groups.

Cortical thickness measurement. In order to obtain local cortical thickness measurements for each sub-
ject, all T1 volume scans were processed by the CIVET pipeline (version 2.1.0) developed at the Montreal Neu-
rological Institute for fully automated structural image analysis. In brief, using a linear transformation, native 
MRI images were registered to the MNI-152  template22. The N3 algorithm was used for correction of intensity 
non-uniformity caused by the inhomogeneities in the magnetic field. The next step is to perform the tissue clas-
sification into white matter (WM), grey matter (GM), cerebrospinal fluid (CSF), and background (BG) based on 
the T1-weighed image. The brain is split into the left and right hemispheres for the purpose of surface extraction. 
The surfaces of the inner and outer cortices were automatically extracted using the Constrained Laplacian-based 
Automated Segmentation with Proximities (CLASP)  algorithm23. The inner and outer surfaces had the same 
number of vertices, and there was a close correspondence between the counterpart vertices of the inner and 

http://adni.loni.usc.edu/methods/documents/
http://adni.loni.usc.edu/methods/documents/
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
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outer cortical  surfaces24. The cortical thickness was defined as the Euclidean distance between the linked vertices 
of the inner and outer surfaces; there were 40,962 vertices in each hemisphere in the native  space23,25.

Cortical thickness values were calculated in native brain spaces rather than in Talairach spaces because of 
the limitations of linear stereotaxic  normalisation26. Intracranial volume (ICV) is defined as the total volume 
of grey matter, white matter, and cerebrospinal fluid. We calculated ICV by measuring the total volume of the 
voxels within the brain  mask27. Brain masks were generated using the FMRIB (Functional Magnetic Resonance 
Imaging of the Brain) Software Library (FSL) bet algorithm. Since cortical surface models were extracted from 
MRI volumes transformed into stereotaxic space, cortical thickness was measured in the native space by applying 
an inverse transformation matrix to the cortical surfaces and reconstructing them in native  space25.

To measure hippocampal volume (HV), we used an automated hippocampus segmentation method using 
a graph cut algorithm combined with an atlas-based segmentation and morphological opening as described in 
an earlier  study28.

Machine learning algorithms. To examine changes in prediction accuracy according to the different 
combinations of predictors, we developed six models. We derived two tree-based ML algorithms: GBM and RF. 
 GBM29 is a tree ensemble model that generates a strong prediction model from weak learners, typically decision 
trees. The RF was proposed by  Breiman30 builds a tree ensemble predictor with multiple decision trees, in which 
the predictions of multiple trees are aggregated by averaging or majority  voting31.

K-fold CV is used to divide the data set into non-overlapping K partitions. K-1 data partitions are used as a 
training set where a classifier is trained, and its generalization performance is tested on the one left-out valida-
tion set. This process is repeated K times. We selected K = 10 as an empirically ideal situation since accuracy is 
saturated when K = 10. Under the CV procedure, the generalization of the predictive power and validation error 

Figure 3.  Flowchart showing selection of participants included in the study. N number, CN cognitively normal, 
SMC subjective memory complaints, MCI mild cognitive impairment, PET Positron emission tomography, 
SUVR Standardised uptake value ratio, AD Alzheimer’s dementia, A amyloid, T tau.
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was computed. The predictive performance was estimated using the area under the receiver operating charac-
teristic (ROC) curve (AUC) and their 95% confidence interval.

Interpretable ML: variable importance and partial dependence plot (PDP). For each optimized 
model examined the variable importance criterion, which measures the relative prediction power (prediction 
strength) by using mean decreased accuracy (MDA) or Gini  index10. For each analysis, variable importance was 
estimated to find which independent variables were influential features for an accurate  classification32. Influen-
tial variables were ranked by calculating relative importance values. In the tree-based model such as GBM and 
RF, when the variables split the tree, the relative importance value of that variable was estimated by the discrep-
ancy of the squared error loss over all trees. A higher relative importance value indicated a greater influence of 
the variables for classifying tau positivity.

We conducted a PDP proposed by J.H. Friedman, which can provide information on whether the feature 
is positively or negatively correlated to the final prediction. In order to avoid over-weighted or underweighted 
results, a Min–Max  normalisation33 was conducted. PDP is a graphical representation tool, which can provide 
information on whether the feature is positively or negatively related to the final prediction, it is shown as follows.

Let xs be the space of input variables consisting of a chosen subset space and xc be the complemental space,
xs ∪ xc = x Then the functional form of approximation f̂ (x) depends on both subset space

If the dependency of the complemental space is not too strong, the average function

where pc(xc) is a marginal probability density function of xc.
An alternative functional form of approximation f̂ (x) becomes

Statistical analysis. For the comparison of demographic and clinical data, a two-sample t-test was used for 
continuous variables, and a chi-square test was used for categorical variables. All analyses were performed with 
R  package34, version 3.6.1 (R Project for Statistical Computing).

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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